If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-84x+432=0
a = 4; b = -84; c = +432;
Δ = b2-4ac
Δ = -842-4·4·432
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-84)-12}{2*4}=\frac{72}{8} =9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-84)+12}{2*4}=\frac{96}{8} =12 $
| -5x+8=112-13x- | | 8x+3-10x=-2(x-3) | | 7+3(x-2)=2x+10 | | -h-19=-12h+15h+17 | | 5q-14=-14-4q | | 16b=19b+18 | | -7(8-7x)+6x=7x+40 | | -7+4x=-19 | | -10c+6=-9-7c | | 10-2b=-4b | | 3s-6=-5+9+4s | | 8h-2-8h=-6h+4 | | 6-3x=6(1-3x) | | -1+4q=-q-6 | | -1+4q=q-6 | | 20+4n=-7(5+n) | | -1-8u=9-6u | | 9(x-3)=3x+15 | | 9z=9-8z | | -2n+10-2n=n-10 | | 9x-2=6x+28 | | -j=10-3j | | 3(2x+5)-2(4+4x)-7=0 | | 6u-10=7u | | 9-8f=7-6f | | (16D^6+8D^4+D^2)y=0 | | 10m=4+9m | | (16D^6+8D^4+D^20)y=0 | | 4(x^2+1)-20=0 | | (X-5)(x+5)=25/24^2 | | 6m=2m+28 | | 6x+38=8x+3 |